Química

Exercícios - Química geral e inorgânica: Ligações químicas

Elaborado e editado por: Eduarda Boing Pinheiro e Thiago Henrique Döring

qui você encontra alguns exercícios sobre ligações quími-

1. (UFSC – 2017) Jogos Olímpicos Rio 2016: o que é o pó que os ginastas passam nas mãos antes da competição?

O pó branco utilizado pelos atletas nas mãos e pés em competições de ginástica artística é comumente conhecido como "pó de magnésio". Esse pó é, na realidade, o carbonato de magnésio, que possui ação antiumectante, utilizado para diminuir a sensação escorregadia durante as acrobacias. O pó atua absorvendo o suor e diminuindo os riscos de o ginasta cair e se machucar. Sem a utilização do "pó de magnésio", o risco de lesões seria maior, mas apenas os atletas utilizam, já que o pó desidrata a pele e pode causar manchas. Sobre o assunto,

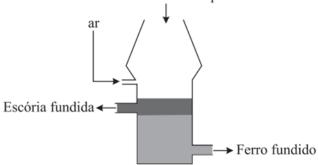
é correto afirmar que:

- 01. ao espalhar 8,43 g de carbonato de magnésio nas mãos, o ginasta estará utilizando 0,100 mol de magnésio e 0,100 mol de carbonato.
- 02. na forma de íons Mg^{2+} , o magnésio possui dez elétrons distribuídos em dois níveis eletrônicos.
- 04. o magnésio é classificado como um metal de transição.
- 08. o magnésio na forma reduzida (Mg^0) não conduz eletricidade.
- 16. a ligação entre íons magnésio e íons carbonato possui elevado caráter covalente e, portanto, o carbonato de magnésio não se dissolve no suor do ginasta.
- 32. o contato do carbonato de magnésio com o suor produzido nas mãos de um ginasta resulta na produção de íons Mg^{2-} e CO_3^{2+} .
- 64. existem 243 g de magnésio em 10,0 mol de carbonato de magnésio.
- 2. (UFSC 2018) O Brasil recebeu, em novembro de 2016, o maior avião do mundo, o Antonov 225 Mriya, fabricado na Ucrânia. Os aviões são máquinas fascinantes e, claro, sujeitas a diversos fenômenos que podem ser explicados por princípios da física e da química. Sabe-se por exemplo que, para manter o conforto dos passageiros, é necessária a pressurização da cabine para que o avião possa trafegar em altitudes elevadas.

Sobre o assunto acima, é **correto** afirmar que:

- 01. o Antonov deve ser pressurizado porque, ao atingir altitudes elevadas durante o voo, há contração do ar no interior da cabine, o que poderia gerar uma explosão.
- 02. em altitudes elevadas, a pressão exercida pelas moléculas de O2 e N2 sobre as paredes externas do avião é tamanha que esses gases se solidificam, formando cristais que podem ser vistos aderidos às janelas do avião.
- 04. durante o voo em elevadas altitudes, a pressão exercida pelo ar externo ao avião é inferior à pressão no interior da cabine, o que sugere que o ar no interior irá aumentar a pressão sobre as paredes internas do avião, se comparado ao voo em baixas altitudes.
- 08. as ligações covalentes que unem as moléculas de O2 e N2 no interior do avião são substituídas por ligações iônicas quando o avião atinge a altitude de cruzeiro, a 13.000 km do solo.
- 16. assumindo mesma massa, a pressão exercida pelo ar sobre as paredes internas do avião a uma temperatura de 18°C será menor do que a pressão exercida a uma temperatura de 30°C, para o mesmo avião.
- 3. (UFSC 2016) Em abril de 2015, toneladas de carbonato de potássio foram apreendidas em Itapemirim (ES). O material, que seria utilizado em uma fábrica de chocolate, poderia estar contaminado e provocar danos graves à saúde. A carga estava em um tanque geralmente utilizado para transportar combustível e seria levada para a Região Nordeste. O carbonato de potássio é um sólido branco empregado na fabricação de sabão, vidro e porcelana e como agente tamponante na produção de hidromel e vinho.

Sobre o assunto tratado acima, é **CORRETO** afirmar que:


- 01. o carbonato de potássio é um sal básico formado pela reação de neutralização entre o carbonato de cálcio e o hidróxido de potássio.
- 02. o átomo neutro de potássio possui 19 prótons, ao passo que o íon K^+ possui 18 elétrons.
- 04. a fórmula mínima do carbonato de potássio é K_2CO_3 .
- 08. o número de oxidação do átomo de carbono presente no carbonato de potássio é +2.

- 16. o átomo neutro de potássio apresenta dois elétrons na sua camada de valência.
- 32. o íon carbonato é monovalente.
- 64. para preparar 500 mL de solução aquosa contendo carbonato de potássio 0,0100~mol/L são necessários 691 mg de carbonato de potássio.
- 4. (UFSC 2018) A anemia ferropriva é um distúrbio caracterizado pela redução da concentração de ferro no organismo. O ferro é essencial para o funcionamento de uma série de processos metabólicos, constituindo espécies químicas como enzimas e proteínas. A deficiência de ferro, em casos mais brandos, costuma ser tratada com a ingestão de sulfato ferroso, no qual o ferro encontra-se no estado de oxidação +2.

Sobre o assunto e com base nas informações acima, é **correto** afirmar que:

- 01. a fórmula mínima do sulfato ferroso é $Fe_2(SO_4)_3$.
- 02. o número de oxidação do enxofre presente no íon sulfato é +6.
- 04. a ligação química entre íons ferro e íons sulfato possui natureza predominantemente covalente.
- 08. no ânion sulfato, o oxigênio é o átomo central, formando ligações covalentes simples com átomos de enxofre.
- 16. um comprimido contendo 143 mg de sulfato ferroso possui massa de ferro equivalente a 40,0 mg.
- 32. a configuração eletrônica do íon ferro presente no sulfato ferroso é $1s^22s^22p^63s^23p^63d^6$.
- 64. o raio do íon ferro presente no sulfato ferroso é menor do que o raio do átomo neutro de ferro.
- 5. (UNESP 2019) O Brasil possui a maior reserva do mundo de hematita (Fe_2O_3) , minério do qual se extrai o ferro metálico, um importante material usado em diversos setores, principalmente na construção civil. O ferro-gusa é produzido em alto-forno conforme esquema, usando-se carvão como reagente e combustível, e o oxigênio do ar. Calcário $(CaCO_3)$ é adicionado para remover a areia, formando silicato de cálcio.

Entrada de matérias-primas

Reações no alto-forno (T = 1600° C): $2C_{(g)} + O_{2(g)} \rightarrow 2CO_{(g)}$ $Fe_2O_{3(g)} + 3CO_{(g)} \rightarrow 2Fe_{(l)} + 3CO_{2(g)}$ $CaCO_{3(s)} + \text{areia} \rightarrow \text{escória}(l) \ [CaSiO_3 + CaO]$ Números atômicos: C = 6, O = 8, Si = 14, Fe = 26.

Quais são as duas propriedades intensivas do ferro e da escória que permitem aplicar a técnica de separação dos componentes da mistura bifásica? Quais os tipos de ligações químicas existentes no ferro e no dióxido de carbono?

6. **(UNICAMP – 1993)** Observe as seguintes fórmulas eletrônicas (fórmulas de Lewis):

Consulte a classificação periódica e escreva fórmulas eletrônicas das moléculas formadas pelos seguintes elementos:

a_j	rosioro	e marogei	1110;	

)	Enxofre e hidrogênio;
:)	Flúor e carbono.
,	

7. (UDESC, adaptada - 2009) O tipo de ligação química que se forma da combinação entre os átomos de dois elementos pode ser definido pela diferença de eletronegatividade entre os átomos participantes da ligação. Qual é a ligação química que se estabelece entre átomos do elemento A (Z=19) com átomos do elemento B (Z=17)?

- 8. (Mackenzie, adaptada) Para que átomos de enxofre e potássio adquiram configuração eletrônica igual à de um gás nobre, é necessário que (indique a soma das alternativas **corretas**): (Dados: número atômico S = 16; K = 19).
 - 01. o enxofre receba 2 elétrons e que o potássio receba 7 elétrons.
 - 02. o enxofre ceda 6 elétrons e que o potássio receba 7 elétrons.
 - $04.\,$ o enxofre ceda 2elétrons e que o potássio ceda 1elétron.
 - $08.\ o$ enxofre receba6elétrons e que o potássio ceda 1elétron.
 - 16. o enxofre receba 2 elétrons e que o potássio ceda 1 elétron.

a) Eásfana a hidnagânia.

9.	(UNESP, adaptada – 2005) Os metais
	alcalino-terrosos, como o estrôncio, pertencentes
	ao grupo 2 da Tabela Periódica, têm a tendên-
	cia de perder dois elétrons para a formação de
	sais com os halogênios pertencentes ao grupo 17,
	como o iodo. Considerando o isótopo $^{88}_{38}Sr$, some
	a(s) alternativa(s) em que todas as informações
	estão corretas.

				ero de partí tuintes do c	
	Fórmula do iodeto de estrôncio	Representa- ção do cátion	Nêutrons	Prótons	Elétrons
01.	SrI	$^{88}_{38}Sr^{+}$	88	38	37
02.	SrI	$^{88}_{38} Sr^{+}$	50	37	37
04.	SrI_2	$^{88}_{38} Sr^{+}$	88	37	37
08.	SrI_2	$^{88}_{38} Sr^{+2}$	50	38	36
16.	SrI_2	$^{88}_{38} Sr^{+2}$	88	38	36

- 10. (CESGRANRIO, adaptada) Quando o elemento X (Z=19) se combina com o elemento Y (Z=17), obtém-se um composto, cuja fórmula molecular e cujo tipo de ligação são, respectivamente (dê a soma da(s) resposta(s) correta(s)):
 - 01. XY e ligação covalente apolar.
 - 02. X_2Y e ligação covalente fortemente polar.
 - 04. XY e ligação covalente coordenada.
 - 08. XY_2 e ligação iônica.
 - 16. XYe ligação iônica.

Notas

Ι.	
2.	
3.	
4.	
5.	
c	
0.	
7	
• •	
8.	
9.	
0.	
-	

46. _

12.	
13.	
14.	
15.	
16.	
17.	
19.	
25.	
26.	
30.	
31.	
33.	
34.	